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We present an order-N �O�N�� calculation method for the quantum electron transport of huge systems up to
80 million atoms. Based on the linear-response Kubo-Greenwood formula, we calculate the conductance
through time-dependent diffusion coefficients using the time-dependent wave-packet diffusion approach, which
treats the electron wave-packet motion with an O�N� and very high-speed calculation. Combining with
molecular-dynamics simulations, we can study the temperature dependence of electron transport properties of
materials from atomistic viewpoints from ballistic to diffusive regimes. We apply the present calculation
method to transport of the carbon nanotubes �CNTs� with various lengths at various temperatures. In metallic
CNTs, the mean-free paths are in good agreements with recent experiments, which reach about 500 nm at room
temperature and increase up to several micrometers at low temperature. We find that the resistance increases
almost linearly with temperature and takes larger values than expected in the quasiballistic regime. In semi-
conducting CNTs, the mobilities are affected strongly by the contacts with metallic electrodes through Schottky
barriers. The mobilities are maximally 30 000 cm2 /V s and cut-off frequencies of 300 GHz at room tempera-
ture. These calculated results provide useful information to the design of CNT field-effect-transistor devices.
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I. INTRODUCTION

Recent advances in nanotechnology have made it possible
to fabricate a number of new nanometer-scale devices using
various materials such as atomic and molecular wires,1–3 sili-
con nanowires,4–6 carbon nanotubes �CNTs�,7–16 and
graphenes.17–20 The transport properties change considerably
depending on the sizes of these devices to compare with the
mean-free path �MFP�, above which the classical diffusive
transport characters manifest, while below which the ballistic
characters appear in such nanometer-scale systems. For the
full understanding of the transport properties and to realize
attractive functional devices with nanometer-scale lengths, it
is important to study the electron transport from diffusive to
ballistic regimes systematically.

In the diffusive transport regime, conductive electrons in
the channel of electrical devices are scattered many times
due to impurities and electron-phonon couplings, which re-
sult in the internal resistance proportional to the channel
length. With decreasing the device size into the ballistic
transport regime, such scattering effects become negligible
and the resistance does not depend on the channel length. In
the ballistic limit, the resistance is determined only by the
inverse of the number of channels multiplied by the universal
quantum resistance G0

−1�h / �2e2�=12.9 k�.21 The MFP dis-
tinguishes the ballistic transport regime from the diffusive
one and varies from several nanometers up to micrometer
scale, depending on the nature of the various materials and

external parameters such as impurities and temperature.
The semiclassical Boltzmann equation method,22 which

has been used to estimate the MFP, is difficult to apply to the
transport problems as the device size becomes small. On the
other hand, the quantum transport calculations such as the
scattering methods using the plane-wave expansion23–26 and
real grids,27 the embedded-Green’s-function �GF� method,28

the master-equation method,29 and the nonequilibrium GF
�NEGF� method30–34 suffer from �O�N3� computation and
the system size is restricted much less than the MFP. The
difficulty to perform quantum transport calculations for
large-scale systems prohibits us to study the transport prop-
erties from ballistic to diffusive regimes.

We developed a time-dependent wave-packet diffusion
�TD-WPD� method35 for the quantum transport calculation
of huge systems. Based on the linear-response Kubo-
Greenwood formula, we calculate the conductance through
time-dependent diffusion coefficients using the time-
dependent wave-packet diffusion approach36–38 combining
with molecular-dynamics �MD� simulations.39 Using the
Chebyshev polynomial expansion for the time-evolution op-
erator for the electron wave-packet motion, we treat the
transport properties of huge systems with O�N� high-speed
calculations. We can study the electron transport properties
of materials from atomistic viewpoints up to 80 million at-
oms at various temperatures from ballistic to diffusive re-
gimes, including the impurity and electron-phonon scatter-
ings where all the phonon modes are taken into account.
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In this paper, we apply the TD-WPD method to the trans-
port of CNTs. The experiments show that the MFP of CNTs
reaches a few hundred nanometers at room
temperature.13,14,16 Effective-mass theories show that such
large MFP is due to the absence of backscattering from
impurities40 and MFP is determined from the acoustic pho-
non scatterings.41 We show the transport properties of metal-
lic CNTs depending on the length, temperature, and the
Fermi energy from ballistic to diffusive regimes systemati-
cally. We also present the transport properties of semicon-
ducting CNTs coupled with metallic electrodes for the
channel-length dependence of mobilities and cut-off frequen-
cies at room temperature.

II. TIME-DEPENDENT WAVE-PACKET DIFFUSION
METHOD

First, we describe the TD-WPD method briefly. The con-
ductivity � at energy E for the Kubo-Greenwood
formula,42,43

��E� =
e2

�
�

n

��E − En��
−�

+�

	n
v̂z�t�v̂z�0�
n�dt , �1�

where v̂z is the electron velocity operator and � is the vol-
ume of the system, is expressed using the time-dependent
diffusion coefficient,

D�En,t� =
	n
�ẑ�t� − ẑ�0��2
n�

t
�2�

with the velocity correlation42

�
−�

+�

	n
v̂z�t�v̂z�0�
n�dt � lim
t→+�

D�En,t� ,

such as the Einstein relation �=e2��E�limt→+� D�E , t�.
Here the density of states ��E� is defined by ��E�
= �2 /���n��E−En�.

Taking the maximum value in the time domain as a dif-
fusion coefficient, the resistance R�L� is given by

R�L� =
L

S

1

e2��E�Dmax�E,t → + ��
, �3�

where the system length along z axis is L and the cross-
sectional area is S.

In the diffusive regime, since the velocity correlation
vanishes after the relaxation time � with 	v�s�v�s���
= 	v2�exp�−2
s−s�
 /��, we have

D�E� = 	v2�� = v�mfp, �4�

where �mfp represents MFP. Then the resistance is propor-
tional to the system length L and is inversely proportional to
S, which is the classical Ohm’s law. In the ballistic regime,
electrons propagate at constant velocity v and D�E , t�=v2t
=vL. Using �=2 / �2�	v /Nc�S, where Nc is the number of
the channels, the conductance G�L� becomes

G�L� =
S

L
e2 


2

�2�	v/Nc�S

 vL =

2e2

h
Nc, �5�

independent of the length L. Thus, if we can evaluate D�E , t�
from an atomistic point of views, we can obtain the transport
properties in both regimes, in addition to the intermediate
quasiballistic regime systematically.

The essence of the TD-WPD method is that, instead of

calculating the numerical diagonalization of the matrix Ĥ,
the time-dependent diffusion coefficient is evaluated by us-
ing wave packets as follows:

D�E,t� �
	�ẑ�t� − ẑ�0��2�E

t
, �6�

where we take the statistical average of the operator

Â= �ẑ�t�− ẑ�0��2 by the formula,

	Â�E �
�

n

	�n
��E − Ĥ�Â
�n�

�
n

	�n
��E − Ĥ�
�n�
. �7�

The propagation length of an electron is defined as

L�E , t���	�ẑ�t�− ẑ�0��2�E, where D�E , t� is represented by
D�E , t�=L�E , t�2 / t. Sufficient numbers of initial wave pack-
ets are enough for the convergence of D�E , t� to the one that
is represented by the complete sets of the eigenfunctions 
n�.
This is suitable for the use of parallel computing. We com-

pute 	�n
��E− Ĥ�Â
�n� and 	�n
��E− Ĥ�
�n� using the
Haydock’s recursion method.44 The trajectories of wave

packets ẑ�t� are calculated for the Hamiltonian Ĥ�t� based on
the time-evolution operator using the Bessel functions and
Chebyshev polynomials of the first kind.36–38

The scatterings from phonon vibrations, the main sources
of temperature dependence of resistances, are included in the

off-diagonal elements of Ĥ�t� in real-space representation
through the time-dependent electron-transfer energies,45

�ij�t�=�ij
0 
Ri

0−R j
0
2 / 
Ri�t�−R j�t�
2. We use the MD simula-

tion for the atomic positions Ri�t� at a finite temperature,
which enables us to take the realistic various phonon vibra-
tion modes into account. Here, we employ the Brenner-
Tersoff potential for the atom-atom interactions,46 and solve
the coupled equations for the motions of each atom using the
velocity Verlet algorithm.39 The initial velocities are prepared
by the equilibrium of Maxwell’s velocity distribution. We
take the temperature T to be constant and scale the velocities
at each time step. From these MD simulations, the phonon-
dispersion relation is computed as an energy density by tak-
ing the two-dimensional Fourier spectra.35,47

Figure 1�a� shows the computing times of the time evolu-
tion of a wave packet in CNTs as a function of the number of
atoms with the time step as 0.1
h / �1 eV�
0.41 fs and the
summation up to the 12th order of Chebyshev polynomials.
We can confirm that the O�N� calculation is realized for the
system of up to 80 million atoms. This indicates that we can
directly compute the transport properties from an atomic
point of view and compare the simulation results with ex-
perimental observations of samples which have micron-order
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lengths. Note that scattering methods or NEGF method30–32

needs O�N3� calculations for the matrix inverse, limiting
about 10 000 atoms. The memory usage of the TD-WPD
method again needs the O�N� due to the storage of the non-
zero components of Hamiltonian, compared with the O�N2�
for the NEGF method. Thus the TD-WPD method requires
the low resources of computers.

III. APPLICATIONS TO CARBON NANOTUBE
TRANSPORT

We apply the TD-WPD method to the transport properties
of CNTs. In the metallic CNT cases, due to the unique elec-
tronic properties with linear dispersion bands at the charge
neutrality point originated from the carbon honeycomb lat-
tice structures, the transport properties are characterized by
the absence of backscattering from long-range impurities.40

Accordingly, CNTs are ideal one-dimensional ballistic con-
ductors and are expected to show high mobility transport
properties15,48,49 and a long MFP.13,14,50

On the other hand, the observed experimental data for the
CNTs longer than a few hundred nanometers14,16 show dif-

fusive transport characters such as the length-dependent re-
sistance. These experimental observations lead us to study
the transport properties of CNTs in various transport regimes
and determine the MFP quantitatively at various tempera-
tures where the dominant origin of resistance is vibrating
phonon scatterings. Up to now, the phonon effects have been
studied for specific modes36 or using the continuum media
model.41,51 Here we take various realistic phonon modes
thermally excited at a finite temperature to study the realistic
phonon-scattering effects on the transport properties of
CNTs. We employ the �-effective Hamiltonian for the pho-
non scatterings with the time-dependent transfer energies
��t�. We take �0=2.5 eV with an equilibrium carbon-carbon
bond length of 0.144 nm. The MD simulations are performed
for a 250 nm �1000 unit cells� armchair CNT subjected to a
periodic boundary condition, sufficiently large for the
convergence.47,52

As for an electron propagation to compute D�E , t� in Eq.
�6�, we use two initial electron wave packets, localized at one
� orbital on A and B sublattice around the center part of the
CNT. Note that the results do not change when we use the
random-phase states as initial wave packets.36 Four Maxwell
velocity distributions of initial atoms are employed in the
MD simulations and thus 2
4 initial conditions are aver-
aged for D�E , t�, where the parallel computing on eight pro-
cessors are assigned to perform the time-evolution calcula-
tion. The summation up to the 12th order of Chebyshev
polynomial is sufficient to ensure convergence. The calcula-
tions up to 20 
m �80 000 unit cells� armchair CNTs are
performed with the total evolution time of about 15 ps and
the time step of �t�0.1h / �1 eV�=0.41 fs.

A. Metallic CNT

1. Length dependence from ballistic to diffusive regimes

We study how the transport properties of the metallic
CNTs change according to the channel length L from the
ballistic to diffusive regimes due to the electron-phonon scat-
terings. First, we note that the phonon-dispersion relation
obtained from the MD simulation35 shown in Fig. 2�b� agrees
very well with other phonon calculations for CNTs.52 We can
see three acoustic phonon branches at a low-frequency re-
gion, i.e., flexure �F� mode, twist �TW� mode, and
longitudinal-acoustic �LA� mode, shown by arrows.

Figure 2�c� shows the calculated length-dependent resis-
tance of the metallic CNTs at 300 K, taking all of the phonon
modes for the scatterings. We use 20 
m length �5,5�- and
�10,10�-CNTs and the Fermi energy EF is located at the
charge neutrality point. Fixing the channel length to the
propagation length L�EF , t�, we plot the resistance R�L�
=L�EF , t� / �e2N�EF�D�EF , t�� as a function of the channel
length L�EF , t�, where N�EF��=��EF�S� is the density of
states per unit length of the CNT.

We note that there are three regimes. When the channel
length is large enough, the resistance R�L� shows a mono-
tonically increasing behavior for L. We can plot a thin solid
line to fit to an asymptotic behavior of the calculated result
with a linear equation of R�L�=� ·L+R0, where the slope �
corresponds to the resistivity. We can see that this asymptotic
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FIG. 1. Logarithm plots of �a� computing times and �b� memory
usage to calculate the time evolution of a wave packet in CNTs as a
function of number of atoms using the TD-WPD method �black
circles� and those by other methods �white triangles�. The time step
is 0.1
h / �1 eV�
0.41 fs and the total evolution time of a wave
packet is about 3 ps, corresponding to 7200 steps. The number of
atoms for CNT with a 1 
m length and that for a graphene with a
1 
m2 area are indicated by arrows, respectively. The two lines in
�a� represent the O�N3� and O�N� dependences while the O�N2� and
O�N� dependences are shown in �b�.
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line converges to zero R0=0 as the channel length L de-
creases to zero. This means that this line shows the classical
resistance and the asymptotic behavior for large L manifests
a typical transport property in the diffusive regime where the
system size is much larger than the MFP. Note that this situ-
ation, illustrated schematically in the lower picture of Fig.
2�a�, is realized when an electron loses the velocity correla-
tion 	v̂�t�v̂�0�� due to the many scatterings with phonons,
resulting in the saturation of the diffusion coefficient
Dmax�EF� independent of the time and length.

When the channel length L becomes small to zero, the
resistance R�L� becomes independent of the length L and
converges to �2
2e2 /h�−1= �2G0�−1, where 2 comes from
the channel number of the metallic CNTs at the charge neu-
trality point. This is a typical feature of quantum transport in
the ballistic limit and a corresponding asymptotic behavior is
shown by the thin broken line.

The thin solid and broken lines intersect at the value
�mfp shown in Fig. 2�c� by the thick arrow. We find that this
value is very close to the length obtained from
�mfp=Dmax�EF , t→�� /vF, which reaches �mfp=515 nm for
the �5,5�-CNT at room temperature �300 K�. Here, the Fermi
velocity vF is obtained from the slope of the propagation
length L�EF , t� as a function of time t in the vicinity of t=0.
This shows clearly that the length �mfp obtained from the
calculation of D�E , t� corresponds to the MFP, which sepa-
rates the regimes from ballistic to diffusive.

When we define the regime where the nanotube length is
comparable to the MFP �mfp, say, 300–800 nm, as a quasi-
ballistic transport regime, the resistance there takes much
larger values than those expected from the linear dependence
of resistance in the diffusive regime and shows a nonlinear
behavior. In other words, we can specify the quasiballistic
regime for the regime where the resistance deviates from the
diffusive and ballistic asymptotic lines, which is 300–800
nm for the metallic �5,5�-CNTs. For the metallic CNT with a
different chirality of �10,10�-CNTs, we can see similar be-
havior of length-dependent resistance from ballistic to diffu-
sive regime as shown by the bold black curve in Fig. 2�c�.
The quantitative difference between different chiralities is
discussed in Sec. III A 3.

These results show that, using the TD-WPD method, we
can evaluate the transport properties of CNTs not only in the
diffusive and ballistic regimes, but also in the quasiballistic
regime from atomistic viewpoints systematically at a finite
temperature. It should be noted that, taking the realistic pho-
non scatterings into account, the resistance is correctly de-
scribed with the present method in the classical diffusive
transport regime without introducing any damping factors for
a dominant electron-phonon coupling, which are needed to
obtain the relaxation time to estimate the MFP.

2. Temperature and diameter dependence

Next, we show the temperature-dependent transport prop-
erties of the �5,5�-CNTs from the ballistic to diffusive re-
gimes. Figure 3�a� shows the length-dependent resistance for
several temperatures ranging from 10 to 300 K. The thin
solid asymptotic lines represent the length-dependent behav-
iors of resistance in the diffusive limit while the asymptotic
behaviors in the ballistic regimes are shown by the thin bro-
ken lines. We see that the CNT resistances are strongly de-
pendent on the temperature T. For example, when we prepare
the metallic CNT with 1 
m long, then cool it down from
300 to 10 K, the temperature behaviors of transport proper-
ties change from diffusive �300 K� to quasidiffusive �100 K�,
up to ballistic �10 K� regimes. Since the transport experi-
ments of CNTs have frequently been done using the CNT
lengths close to 1 
m, this result suggests that the tempera-
tures are very important parameters for the analyses of the
resistance behaviors of CNTs.

In the classical diffusive limit, the continuum model ap-
proach based on the effective-mass theory41 shows that only
TW mode contributes to the backscattering for the armchair
CNTs and the MFP �mfp is obtained as follows:

�mfp = �
�3acc�
0

4g2
�2 d

kBT
, �8�

where d is the diameter of the CNT and 
 and g2 are the
shear modulus and the deformation potential of CNTs,
respectively. When we use the parameters such as

=57.38 kg /s2 and g2=0.8–2.7 eV extracted from the data
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FIG. 2. �Color online� �a� Schematic pictures of ballistic �upper� and diffusive �lower� transport behaviors. �b� Phonon-dispersion relation
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of “graphite,” since they are not obtained from the CNT
experiments nor theoretically, we obtain the MFP larger than
a few hundred nanometers even at room temperature and
shows the T−1 dependence due to scattering by the acoustic
phonons. This theory agrees qualitatively with the experi-
ments in the diffusive transport limit.16,53

Let us compare the MFPs for several temperatures with
those from the effective-mass theory. The obtained MFPs are
shown in Fig. 3�b� as a function of temperature. We see an
inverse temperature dependence very clearly, which is con-
sistent with the effective-mass theory. In the present TD-
WPD method, the MFP evaluated at 300 K reaches about
500 nm. We note that the MFP observed in experiments
ranges from 300 nm to 1.6 
m at a low source-drain bias
voltage, depending on the chiralities and impurities,
etc.13,14,16,41,51 From the obtained MFPs, we have the
temperature-dependent one-dimensional resistivity � defined
by ��R�L� /L�1 / �2G0�mfp�, where 2G0 corresponds to the
two conductive channels of the CNTs at EF. In the lower left
inset of Fig. 3�b�, we show � as a function of temperature,54

which represents the clear linear dependence, such as
��T�=0.045 T k� /
m, in good agreement with other
experiments14,16,53 and also with the results from effective-
mass theories.41

The diameter dependence of resistivity is shown in the
upper right inset of Fig. 3�b�, where we study the resistivity
of the �5,5�-, �7,7�-, �9,9�-, and �10,10�-CNTs. We see that the
resistivity clearly shows the inversely proportional behavior
to the nanotube diameter d, consistent with Eq. �8�. We find
that the data is well fitted by the dashed curve of
�=9.765 /d �k� /
m�, where d is in units of nanometer.
From these results, we can deduce the temperature- and
diameter-dependent resistivity of metallic CNTs in the diffu-
sive regime due to electron-phonon coupling as follows:

� �k�/
m� 
 0.032
T �K�
d �nm�

. �9�

We note that � extracted from experimental results range
from 0.024 to 0.121.13,14,16 These results show that the
present TD-WPD method is effective for the transport prop-
erties in various transport regimes at various temperatures.
This suggests the possibility to study the temperature depen-
dence of transport properties for other materials.

3. Energy dependence of mean-free path

We study the energy dependence of MFP to compare the
transport properties in the linear band dispersion region with
those in the nonlinear band dispersion region far away from
the charge neutrality point. Figure 4�a� shows the calculated
MFP of �5,5�-CNT as a function of the energy at several
temperatures, where the charge neutrality point is located at
0 eV. We see that the MFP becomes very long around 0 eV,
which increases remarkably as the temperature decreases,
i.e., up to about 3 
m at T=50 K. This is due to the sup-
pression of backscattering from the linear band dispersion as
shown in the inset of Fig. 4�a�.

On the other hand, the MFP drops rapidly down in the
higher subband region �
E
�1.5 eV� since new scattering
channel bands are open for the conduction of electrons. For
example, the MFP with 3 
m around E=0 eV is reduced to
500 nm around E=2 eV at T=50 K and 500–100 nm at
T=300 K. Similar energy dependences of the transport be-
haviors have been obtained in the experiment in CNTs
�Ref. 50� and also in the model calculation with static
disorders.55

Figure 4�b� shows the length dependence of R�L� at
300 K for E=0 eV and E=−2 eV, indicated by arrows in
Fig. 4�a�. When we change the energy from 0 to −2 eV, the
resistance decreases to one third, from �2G0�−1 to �6G0�−1 in
the ballistic limit, which reflects that six effective channels
are open at E=−2 eV. As the length of the CNT increases,
the behaviors of resistance change significantly. We see that
the resistance increases very rapidly, with the slope of resis-
tivity �=31 k� /
m for E=−2 eV, showing that an opening
of new scattering channels increase the resistance consider-
ably. On the other hand, an increase in resistance for
E=0 eV is much slow with �=13 k� /
m. So these two
resistances cross with the length close to 200 nm. We also
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FIG. 3. �Color online� �a� Channel-length dependence of resis-
tance of the �5,5�-CNT at several temperatures ranging from 10 to
300 K. Thin solid lines represent the diffusive limit while thin bro-
ken line show the ballistic limit. �b� Inelastic MFP of the �5,5�-CNT
due to electron-phonon couplings from 50 to 300 K. The dashed
curve represents an inverse temperature dependence, which indi-
cates that the acoustic phonons contribute to the transport proper-
ties. �Lower left inset� Temperature dependence of resistivity � in
the diffusive regime. �Upper right inset� Resistivity � of �5,5�-,
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note that the MFP for E=−2 eV is almost vanishing and thus
the ballistic transport regime is difficult to observe in experi-
ments for any nanotube length when we set the energy cor-
responding to E=−2 eV.

B. Semiconducting CNT

Length dependence of mobility and cut-off frequency

Here, we consider the transport properties of the semicon-
ducting CNT, which is applicable to the field-effect-transistor
�FET� devices. The mobility and cut-off frequency of �10,0�-
CNT FETs are investigated from ballistic to diffusive re-
gimes at room temperature using the TD-WPD method.

In the semiconducting CNT, the contacts with metallic
electrodes are very important, since Schottky barriers are
formed due to the charge redistribution close to the contacts.
Here we treat this effect using a phenomenological planar
gate model as shown in the inset of Fig. 5�a�. The gate volt-

age effects on the potential energy, included in Ĥ�t� as an
on-site energy for each atom, are obtained as follows.

We consider that the CNT with the radius R is put along
the z axis and the metallic gold electrode is attached at the
right side, which is surrounded by a dielectric material with �
uniformly. The distance between the CNT and the gate sub-
strate is Rs. The potential of semiconducting CNTs attached

to the metallic electrodes is obtained from the self-consistent
calculation of the Poisson equation,56 which relates the total
potential ��z� to the charge density ��z� of the CNT under an
applied gate voltage Vg,

�q = Uq�q + Mq�q. �10�

Here �q, �q, and �q are the Fourier transformation of
��z�, ��z�, and the gate bias ��z��Vg, respectively. Using
the modified Bessel functions I0 and K0, the coefficients
Uq and Mq are given by the analytic forms of
Uq=2�I0�qR�K0�qR�−K0�2qRs�� /� and Mq=exp�−
q
Rs�.
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The charge neutrality level E0�z� of the CNT measured from
EF=0 eV is related to the total potential ��z� such as

E0�z� + e��z� = �W , �11�

where �W is one of the fitting parameter independent of z.
Since the charge neutrality level is given, the z-dependent
charge density can be obtained from

��z� = �0�z� + e
8�R

3�3acc
2 �D0E0�z�exp�−

z

d
��sgn�z� �12�

and

�0�z� = e� N�E�sgn�E�f��E − E0�z��sgn�E��dE . �13�

The pinning strength is represented by D0 and we take an
effective decay constant d of the surface states to be about 2
nm.57 N�E��=��E�S� represents the density of states per unit
length and f�E� is the Fermi distribution function. Equations
�10�–�12� are solved self-consistently to obtain ��z�. In order
to realize the boundary condition at ��z=0�=0, we employ
an antisymmetric condition, ��z�=Vg sgn�z� and
E0�z�+e��z�=�W sgn�z�, instead of ��z�=Vg and Eq. �11�.
We assume that the �10,0�-CNT is surrounded by a dielectric
material of �=5.0 and the distance is set as Rs=19 nm. To fit
the experimental values, we adopt the parameters D0=0.1,56

and �W=0.65
Eg /2, where the energy band gap Eg of the
�10,0�-CNT is equal to 0.8 eV.

Figure 5�a� shows the effective potential in the vicinity of
contact, thus conduction-band bottom as a function of posi-
tion z along the CNTs with various channel lengths ranging
from 0.2 to 1.4 
m for a gate voltage Vg=1.0 V. We can
see that the Schottky barrier is formed at the contact to elec-
trode, whose effects range up to 100 nm inside the CNTs.
This is due to the weak screening of CNTs as a low-
dimensional material. These potential energies are included

in the diagonal elements of Ĥ�t� for each atomic position.
Let us see how the mobility changes according to the

length of the CNT from the ballistic to the diffusive regimes.
We define the pseudomobility 
� by the following equations
within the effective-mass approximation:


� �
e�

m�
with � =

Dmax�Vg�
v2 , �14�

where � represents the scattering time and the velocity v is
obtained from 0.59 nm/fs for Vg=1.0 V. We approximate
the bottom of the conduction band by a parabolic curve and
the effective mass of electrons, which is defined by
1 /m��d2E�k� /	2dk2 is evaluated as m�
0.296
10−31 kg.

Note that the calculated 
� is the pseudomobility, since
the mobility is generally defined only in the diffusive regime,
not in the �quasi-�ballistic regime. The important point here
is that there are two factors to determine the time �. One is
the relaxation time we expect in the diffusion regime due to
the scatterings with phonons. The other is the time at which
electrons reach the contact where the potential barrier is
formed. Therefore, if the channel length L is short enough,
we expect that the pseudomobility 
� will be proportional to
L and approaches zero for the limiting L=0 case. We may

call such a regime as a �quasi-�ballistic regime since the elec-
tron mobility is determined by the device structure itself. In
the present calculation, we put two initial localized wave
packets at the left edge of CNT and then Dmax and 
� are
obtained from the time-dependent calculations of D�E , t�.
The MD simulations are performed for 470 unit cells zigzag
�10,0�-CNT subjected to a periodic boundary condition at
300 K. Two Maxwell distributions of initial atom velocities
are employed in the simulation for the phonons.

Figure 5�b� shows the calculated pseudomobility 
� vs
nanotube length L for the �10,0�-CNT FET devices applying
a gate voltage of Vg=1.0 V at 300 K. The transport proper-
ties are studied as a function of nanotube lengths ranging
from 200 nm up to 1.4 
m. We see that the obtained 
�

changes the characteristics gradually from L�600 nm.
Since the pseudomobility takes the value of

��30 000 cm2 /V s independent of the length, as shown
by the straight line in Fig. 5�b�, we can say that the diffusive
regime is realized where the nanotube length is longer than
600 nm and the mobility is determined by the electron-
phonon scatterings there. This corresponds to the intrinsic
mobility of the CNT, which is observable in experiments, not
to be related to the device structure such as contacts to elec-
trodes. We note that the reported experimental values of mo-
bility range from 1000 to 79 000 cm2 /V s, depending on the
various samples.15,48,49,58,59 The present results are also con-
sistent with the previous theoretical studies.48

On the other hand, when the nanotube length becomes
smaller than L=600 nm, the pseudomobility decreases as
the nanotube length decreases. This clearly shows that the
electron motions are significantly affected by the Schottky
barrier formation due to the contact effects from the geo-
metrical device structure, whose effects range up to 100 nm
or more. Therefore we can say that the system is in the
quasidiffusive and the ballistic regimes.

The MFP obtained from

�mfp�Vg� =
Dmax�Vg,t → ��

v
�15�

including the electron-phonon coupling and the Schottky
barrier from the contact geometry is evaluated as 343 nm for
the semiconducting �10,0�-CNT. This also corresponds to the
intersection value where the two asymptotic lines for the
diffusive and ballistic limit cross in Fig. 5�b�, where the bro-
ken line in the ballistic regime is plotted as a linear length
dependence that the pseudomobility 
� shows, such as

=eL / �m�v�. We note that this MFP is shorter than that of
metallic �5,5�-CNTs �Ref. 35� even though these CNTs have
almost the same radius R. This is because opening band gap
disrupts the linear band dispersion around the Fermi energy
in the semiconducting CNT case.

These observations show that the transport properties of
semiconducting �10,0�-CNT change with the channel length
about L=600 nm from the diffusive to quasiballistic regime,
and about L=350 nm from quasiballistic to ballistic re-
gimes, though these values are strongly affected by the effect
of contact to electrodes. Since the observed mobility would
change dramatically, careful treatment is needed for the
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analyses of the transport properties in the different transport
regimes.

Finally, we estimate the cut-off frequency, which is a stan-
dard criterion for the high-speed performance of transistors.
High cut-off frequency is essential to realize the high-speed
response of devices. Recent experimental works have dem-
onstrated the cut-off frequencies up to 50 GHz using the
CNT-FETs with a few hundred nanometers channel
length,60–64 and the phenomenological law has been also
obtained.65 Although the cut-off frequency of CNT-FET with
a 2 nm gate is estimated to reach as high as 1.6 THz using
the nonequilibrium Green’s-function method,66 the length
dependence of the cut-off frequency from the ballistic to dif-
fusive regimes has not been clarified yet theoretically. There-
fore, here we investigate the cut-off frequency using the TD-
WPD method. The cut-off frequency fT is related to the time
�T in which electron propagates from the source to the drain
electrodes,

fT �
1

2��T
. �16�

Here, �T is obtained using the diffusion coefficient in a low
source-drain bias limit,67

�T =
L2

Dmax�EF�
, �17�

where the channel length is denoted by L.
We show the cut-off frequencies vs channel length L for

the �10,0�-CNT FET device at room temperature in Fig. 5�c�.
The applied gate voltage is set to 1.0 V. We see that the
cut-off frequency increases with the device size decreasing.
The simulated result reveals that the frequency achieves 300
GHz using the 0.2-
m-long CNTs. We note that the fre-
quency increases with the diameter of the CNT increases. We
can estimate that when v=0.59 nm / fs, fT will reach at
fT=1 THz for L=100 nm. The present simulation gives
very useful information to design the CNT devices with high
mobility and with high cut-off frequency.

IV. SUMMARY

In the present paper, we developed an order-N �O�N��
calculation method for the quantum electron transport of

huge systems up to 80 million atoms. This method provides
us the conductance and resistance through the time-
dependent diffusion coefficients based on the Kubo-
Greenwood formula. Combining the motions of time-
dependent wave packets together with a molecular-dynamics
simulation, we derive the TD-WPD approach to calculate
conductance. With this TD-WPD method, we can study the
temperature-dependent electron transport properties of mate-
rials from atomistic viewpoints from ballistic to diffusive
regimes, including both the effects of impurity scatterings
and electron-phonon couplings.

We applied the present method for the transport properties
of metallic and semiconducting CNTs with various lengths at
various temperatures. In the metallic CNTs, we evaluated the
length dependence of transport properties from ballistic to
diffusive regimes at various temperatures. The obtained
temperature-dependent mean-free path and resistance are in
good agreements with recent experiments. The mean-free
path reaches about 500 nm and increases up to several mi-
crometers at low temperature. Furthermore, we found that, in
the quasiballistic regime which exists with lengths between
300 and 800 nm at room temperatures, the resistances take
larger values than expected. In the semiconducting CNTs, the
mobilities are affected strongly by contacts with metallic
electrodes since the Schottky barriers are formed, whose ef-
fects range up to 100 nm inside the CNTs. We found that the
obtained mobilities are maximally about 30 000 cm2 /V s at
room temperature and cut-off frequencies of 300 GHz form
semiconducting �10,0�-CNTs. These results provide useful
information for the design of CNT-FET devices.
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